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Abstract
The electro-hydrodynamic coupling of electrolyte ions and surface-dissociated
counterions, i.e., microions, to the motion of a suspended colloidal macroion
leads to an additional contribution to the colloidal friction coefficient. On
the basis of the primitive model and the generalized Smoluchowski diffusion
equation, a simplified mode–mode coupling scheme (MCS) is developed for
quantifying the effect of electrolyte friction on the tracer diffusion of a macroion.
In this scheme, far-field hydrodynamic interactions between all ionic species
are considered. The influence of the finite size of the microions is accounted for
by using mean spherical approximation expressions of static pair correlation
functions for unequal sizes. The present paper extends earlier work of one of the
authors to include the effects of finite-sized and hydrodynamically interacting
microions. Our theoretical results are used to test the relevance of finite size
effects in suspensions of nano-sized particles such as charged globular micelles.
Significant finite size effects are only observed for macroion–microion size
ratios typically smaller than 10.

1. Introduction

The dynamics of charge-stabilized colloidal particles of globular shape (so-called macroions)
dispersed in a solution of weakly charged counter- and co-ions forming a neutralizing and
screening microion atmosphere, has attracted considerable interest, both from the experimental
and theoretical point of view. The reason for the strong interest in these systems is that
a large fraction of colloidal systems of biological and technological relevance are, in fact,
charge-stabilized dispersions with water as solvent. A theoretical description of the transport
properties in these systems is demanding, since the particle dynamics is determined by a
delicate interplay of electrostatic, steric and solvent-mediated hydrodynamic forces. Existing
theoretical work on the dynamics of charge-stabilized colloids is mostly based on an effective
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macrofluid model of dressed macroions which interact by an effective pair potential of spherical
symmetry. The effective pair potential has been determined on various levels of approximation,
ranging from mean-field schemes to more sophisticated integral equation approaches, density
functional theory approximations and computer simulations, by integrating out the microionic
degrees of freedom. To date, the electrostatic part of the celebrated Derjaguin–Landau–
Vervey–Overbeek (DLVO) potential of linear electrostatic screening is still the most widely
used effective macroion pair potential. Here, the presence of the screening microions is
manifest in a mean-field-like way through a screening parameter κ and an effective macroion
charge [1, 2].

A major drawback of the dressed macroion model with spherically symmetric pair potential
is that it does not account for the kinetic influence of the microionic atmosphere on the dynamics
of the colloidal particles. The thermal fluctuations in the microionic density surrounding a
colloidal macroion are coupled to its Brownian motion by electro-steric ion–ion interactions
and by solvent-mediated hydrodynamic interactions (HI). An explicit inclusion of HI effects
between all ionic species demands the use of a more fundamental level of description where
the macroions and the microions are treated on an equal footing as separate dynamical entities.
The simplest model with such a democratic treatment of microions and macroions is given
by a dynamic extension of the primitive model (PM) [3]. In this extended model, all ions
are described as uniformly charged hard spheres interacting by long-range Coulomb forces,
embedded in an unstructured solvent of uniform dielectric constant ε and shear viscosity η0.
The local solvent flow, in response to the motion of the ionic spheres, is described by the Stokes
equation of low Reynold’s number creeping flow.

An interesting example of an electrokinetic effect caused by the dynamic coupling of the
microions to the macroion motion is the tracer diffusion of a spherical colloidal macroion in
an unbounded multi-component electrolyte. Light scattering data have revealed, in this case,
that the diffusive motion of the electrolyte ions relative to the large tracer macroion leads to an
increase in the friction coefficient of the tracer [4, 5]. A consequence of the electrolyte friction
is that the long-time self-diffusion coefficient of the tracer,

DL
T = kBT

ζ S
T + �ζT

, (1)

has a minimal value when the thickness of the macroionic cloud, as measured by the Debye
screening length κ−1, is approximately equal to the diameter, σT = 2aT, of the tracer sphere.
Here, ζ S

T = kBT/DS
T is the friction coefficient related to the short-time tracer-diffusion

coefficient DS
T. It is, in general, different from the bare friction coefficient, ζ 0

T , of an isolated
sphere, due to the hydrodynamic interactions between the tracer sphere and the microions. The
long-time increase in the tracer friction caused by the electrolyte is quantified by the excess
friction contribution �ζT.

In recent work, Nägele and Dhont [6] and Kollmann and Nägele [7, 8] have formulated a
multi-component mode–mode coupling scheme (MCS) for the overdamped Brownian motion
of spherical particles based on the many-body Smoluchowski equation. In this scheme, HI
between macroions and microions are treated on a pairwise additive level using the long-
distance Rotne–Prager (RP) form of the hydrodynamic mobility tensors, with all ionic species
described by the dynamically extended primitive model. In [7, 8], the microions had been
considered as point-like with regard to their excluded volume interactions, characterized,
however, by finite values of the free diffusion coefficients. For analytic simplicity, the static pair
correlation functions required as input to the MCS had been determined by the linear Debye–
Hückel (DH) approximation. Explicit analytic expressions have been derived in this way for
the (time-resolved) electrolyte friction contribution to DL

T and to the sedimentation velocity
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of the tracer in a many-component electrolyte solution. These results have been shown to be
in good accord with experimental results for DL

T in dilute suspensions of polystyrene spheres
and with Booth’s theory of macroion sedimentation [9, 10]. An important conclusion obtained
in [7] is that the minimum in DL

T at κaT ≈ 0.3 is due to the combined effect of hydrodynamic
and electro-steric forces acting between macroions and microions. The minimum cannot be
explained by the presence of direct forces alone, as it has been attempted in earlier statistical
mechanical approaches where HI are totally ignored [11–16].

In this paper, we generalize earlier results on electrolyte friction by Kollmann and Nägele
to finite-sized macroions. We will show that microionic finite size effects are only relevant for
suspensions of nano-sized macroions such as charged globular proteins or micelles [17, 18],
when the size ratio, λ = aT/as, between the macroion and small microion radii is typically
less than 10. The inclusion of finite microionic sizes allows us to explore an extended range
of diffusion problems, from the tracer diffusion of a large colloidal macroion down to self-
diffusion in genuine salt solutions. In addition to the macroion–microion HI, we further
account for HI among the microions. In [7], microion–microion HI had been neglected in
comparison to the strong HI acting between the large macroion and the surrounding microions.
As input for the static pair correlation functions, we use analytic expressions provided by
the mean spherical approximation (MSA) solution of asymmetric electrolytes [19, 20]. The
MSA is a generalization of the DH approximation to finite sphere sizes and to finite particle
volume fractions, and conforms to the exact Stillinger–Lovett zeroth and second order moment
conditions, respectively, of local electroneutrality and charge oscillations [21, 22].

The paper is organized as follows. In section 2, we give the essentials of the simplified
mode–mode coupling scheme for macroion tracer diffusion in multi-component and finite-
sized electrolytes. For simplicity, we model the electrolyte solution by the restricted PM of
equal sized ions with equal free diffusion coefficient D0. In section 3, an explicit expression for
the friction coefficient �ζT and the long-time tracer diffusion coefficient DL

T is constructed by
taking advantage of simplifying properties of the linear MSA solution. The resulting expression
for �ζT is shown to be the sum of an electrostatic contribution and a charge-independent term.
The appendix contains the details of the MSA static correlation functions needed for calculating
�ζT. Numerical results for �ζT and for DL

T as functions of ionic strength, macroion–microion
size ratio, macroion charge and ionic free particle mobilities are presented and discussed in
section 4. This section also includes a comparison with experimental results and our concluding
remarks.

2. Simplified MCS of macroion tracer diffusion

We consider an (m + 1)-component extended primitive model consisting of an infinitely dilute
tracer component, α = 0 = T, of macroions immersed in an electrolyte solution of microionic
componentsα = 1, . . . , m, solvent shear viscosity η0 and solvent dielectric constant ε. A tracer
macroion is characterized by its radius aT, charge number ZT, and its free diffusion coefficient
D0

T = kBT/ζ 0
T with ζ 0

T = Cπη0aT. The coefficient C is equal to 6 or 4, respectively, when
stick or perfect slip fluid boundary conditions are assumed on the macroion surface. The
microionic components have number densities {nα} and charge numbers {Zα}. For simplicity,
we assume that all microions are of the same radius as, and have the same free diffusion
coefficient D0 = kBT/(Cπη0as).

Information on the tracer diffusion of a macroion is contained in the mean-square
displacement,

WT(t) = 1
6

〈
(rT(t) − rT(0))2〉 , (2)
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of the position vector rT pointing to its centre. The time evolution of WT(t) is described by
the memory equation,

∂

∂ t
WT(t) = DS

T − 1

ζ S
T

∫ ∞

0
du �ζT(t − u)

∂

∂u
WT(u), (3)

derived from the generalized Smoluchowski equation [6–8]. The integral including the time-
dependent tracer friction function, �ζT(t), accounts for electro-hydrodynamic retardation
effects caused by the non-instantaneous response of the microion densities and associated
solvent to the tracer motion. The mean-square displacement is linear in t at short and long times,
respectively, with slopes DS

T and DL
T which obey the order relations 0 < DL

T < DS
T � D0

T [23].
Inspection of equation (3) shows that the time-integrated electrolyte friction contribution,

�ζT =
∫ ∞

0
dt �ζT(t), (4)

is related to DL
T by equation (1). The coefficient DL

T can be determined for a dilute macroion
dispersion from a dynamic light scattering measurement of the self-dynamic scattering function

GT(q, t) = 〈exp{iq · (rT(t) − rT(0))}〉
= exp{−q2WT(t)} [

1 + O(q4)
]

(5)

extrapolated to zero wavenumber q and to long times [24].
The exact microscopic expression for �ζT(t) depends in a complicated way on the

electro-steric interparticle forces, and on the many-body hydrodynamic mobility tensors of the
macroion and the microions. Application of a lowest-order mode–mode coupling scheme to the
microscopic expression for �ζT(t), and use of the Rotne–Prager (RP) far-field approximation
for the hydrodynamicmobility tensors, has led to the following positive definite expression [7],

�ζT

ζ 0
T

= D0
T

6π2

∫ ∞

0
dt

∫ ∞

0
dk k4GT(k, t)vT(k) · S(k, t) · vT(k), (6)

which approximates the increase in the tracer friction due to the presence of the electrolyte
ions. We refer to [6–8] for a detailed derivation of equation (6) on the basis of the generalized
Smoluchowski equation.

In equation (6), �ζT is expressed in terms of the dynamic self-scattering function GT(k, t)
of the tracer macroion, the symmetric m×m-matrix S(k, t) of partial dynamic structure factors,
Sαβ(k, t), which describe electrolyte density correlations in the absence of the macroion, and
in terms of the m-dimensional vector vertex vT(k) of scalar components vTα(k). The vertex
vector reads explicitly

vT(k) = cT(k) − 1

D0
T

hd
T(k) · S−1(k), (7)

where the vectors cT(k) and hd
T(k) have components {n1/2

α cTα(k)} and {n1/2
α hd

Tα(k)},
respectively. Here, cTα(k) is the three-dimensional Fourier transform of the partial direct
correlation function, cTα(r), and hd

Tα(k) is the distinct partial hydrodynamic function for
the tracer and a microion of component α. The matrix S−1(k) is the inverse of the matrix
S(k) = S(k, 0) of microion partial static structure factors in the bulk electrolyte. The latter
can be expressed as [23]

S(k) = I + h(k), (8)

where I is the identity matrix, and h(k) is an m × m matrix of components {(nαnβ)1/2hαβ(k)}
of the Fourier-transformed microion–microion total correlation functions hαβ(k).
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Since the macroion component is assumed to be infinitely dilute, we obtain from the multi-
component Ornstein–Zernike equations the following relation between the vectors of the total
and direct tracer–microion correlation functions,

cT(k) = hT(k) · S−1(k), (9)

where hT(k) has the components {n1/2
α hTα(k)}. This relation allows us to rewrite the vertex

vector in the more useful form

vT(k) = hv
T(k) · S−1(k), (10)

where we have defined a vector of associated tracer–microion vertex functions by

hv
T(k) = hT(k) − 1

D0
T

hd
T(k). (11)

The HI between tracer and microions are accounted for in (6) through the appearance of the
vector, hd

T(k), of distinct tracer–microion hydrodynamic functions hd
Tα(k). In the long-distance

RP approximation,

hd
Tα(k) = D0

TV
〈
k̂ · T RP

Tα (r) · k̂ eik·r
〉

= D0
T

∫
dr gTα(r)k̂ · T RP

Tα (r) · k̂ eik·r, (12)

where V is the system volume, k̂ = k/k, gTα(r) is a tracer–microion radial distribution
function, and T RP

Tα (r) is the Rotne–Prager tensor [25],

T RP
Tα (r) = aT

{
3

4r

[
I + r̂r̂

]
+

a2
T + a2

α

4r3

[
I − 3r̂r̂

]}
, (13)

for the HI between the tracer and a macroion of radius aα, with r̂ = r/r . The RP tensor is the
long-distance part of the two-sphere hydrodynamic mobility tensor valid to order 1/r3 in the
interparticle distance r . It preserves the positive definiteness of the exact many-body mobility
function, and is characterized by ∇ · T RP

Tα (r) = 0 for r �= 0. In the RP approximation, the short-
time tracer-diffusion coefficient DS

T is approximated by the Stokesian value D0
T = kBT/ζ 0

T , and
hence ζ S

T by ζ 0
T , a fact which was used in the left-hand side of equation (6). The approximation

DS
T ≈ D0

T can be used for sufficiently small electrolyte volume fractions.
We expect that the RP far-field form accounts for the most important contributions of the

HI between the macroions and microions. For pointlike microions, it has been shown that use
of the RP approximation conforms to the exact zero-flux hydrodynamicboundary condition for
a microion touching the surface of the tracer [7]. Inclusion of near-field HI contributions and
lubrication forces would complicate the MCS tremendously. Moreover, it is unclear whether
the lubrication theory of continuum mechanics is applicable on a length scale comparable to
the size of water molecules; that is, in a situation when a (hydrated) counterion is close to the
macroion surface.

Carrying out the angular integration in equation (12) and assuming microions of equal
radius as, we can write the vector of partial hydrodynamic functions as

hd
T(k) = D0

T

{∫ ∞

0
dr rgT(r)KT(k, r)

}
, (14)

with gT(r) = hT(r) + n1/2. The hydrodynamic kernel function, KT(k, r), is given by

KT(k, r) = 3VT

2a2
T

[
3

(
j0(kr) − j1(kr)

kr

)
+ λ′′(kaT)2 j2(kr)

(kr)2

]
. (15)



S4026 M G McPhie and G Nägele

Here, n1/2 is an m-dimensional vector of microion density components {nα}1/2, VT is the
volume of the macroion, λ = aT/as is the ratio between the macroion and microion radii,
λ′′ = 1 + λ−2, and jn is the nth order spherical Bessel function of the first kind. For later use,
we note that equation (14) can be alternatively written as

hd
T(k) = D0

T

{∫ ∞

aTλ′
dr rhT(r)KT(k, r) − 3VT

(
1 +

3

λ
+

1

λ2

)
j1(kaTλ′)

kaTλ′ n1/2

}
, (16)

with λ′ = 1 + λ−1. The tracer–microion overlap region is here excluded from the integration.
The bulk dynamics of the electrolyte ions,which is independent of the tracer dynamics (but

not vice versa), can be determined in principle from solving a closed set of MCS equations
for S(k, t) which includes the RP form of HI for consistency [26, 27]. This elaborate and
numerically demanding procedure would allow for a completely self-consistent solution for
GT(k, t) and hence for �ζT. However, due to the modest microion correlations in the bulk,
S(k, t) is expected to be only modestly perturbed from its short-time form at later times,
provided that the electrolyte volume fraction is sufficiently small.

Therefore, and for analytical tractability, we approximate, in equation (6), both S(k, t)
and GT(k, t) by their respective short-time forms,

S(k, t) ≈ exp {−k2H(k) · S−1(k)t} · S(k)

GT(k, t) ≈ exp {−D0
Tk2t}, (17)

evaluated within the RP treatment of HI. Since D0
T � D0 for λ 	 1, S(k, t) decays in this

case much faster than GT(k, t). For D0
T ≈ D0, the tracer is practically part of the electrolyte

for small ZT.
In equation (17), H(k) is an m × m matrix of partial hydrodynamic functions associated

with the short-time dynamics of the microions [23]. The matrix can be split into self and
distinct parts, so that

H(k) = D0I + Hd(k). (18)

Note here that in the RP approximation, the short-time self-diffusion coefficient of the
microions is equal to the bare diffusion coefficient D0. The distinct part of H(k) follows
in the RP approximation as [23]

Hd(k) = D0V
〈
k̂ · T RP

αβ (r) · k̂ eik·r
〉
n1/2n1/2

= D0

{∫ ∞

0
dr rh(r)Ks(k, r) + Vsn

1/2n1/2

}
(19)

where the hydrodynamic kernel function for the microions is given by

Ks(k, r) = 3Vs

2a2
s

[
3

(
j0(kr) − j1(kr)

kr

)
+ 2(kas)

2 j2(kr)

(kr)2

]
. (20)

The kernel Ks(k, r) follows from equation (15) by setting aT equal to as and λ equal to one,with
Vs denoting the volume of a microion sphere. In [7], the HI between the pointlike microions
were fully neglected in comparison to the strong tracer–microion HI, using as justification for
their neglect that H(k) = D01 + O(as/aT). The consideration of microion–microion HI in
the present work will allow us to quantify their contribution to �ζT when the size ratio λ is
not very large.

After inserting the short-time forms (17), the time integral in equation (6) is evaluated to
give

�ζT

ζ 0
T

= D0
T

6π2

∫ ∞

0
dk k2vT(k) · S(k) · [

D0
TS(k) + D0I + Hd(k)

]−1 · S(k) · vT(k). (21)
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We can rewrite this expression in terms of the associated tracer–microion vertex functions
vector, hv

T(k), defined in equation (11), and the diffusion coefficient ratio d2 = D0/(D0 + D0
T)

as
�ζT

ζ 0
T

= 1 − d2

6π2

∫ ∞

0
dk k2hv

T(k) · [
I + h(k) − d2hv(k)

]−1 · hv
T(k). (22)

We have here defined an m × m matrix of associated microion vertex functions,

hv(k) = h(k) − 1

D0
Hd(k). (23)

To calculate the electrolyte friction �ζT from equation (22) requires as the only input
the vectors hT(k) and hd

T(k), and the matrices h(k) and hd(k), all of which are related to
transforms of the tracer–microion and microion–microion radial distribution functions. These
transforms are determined in the following section using the semi-analytical MSA solution for
a multi-component PM system.

3. Explicit expressions in the mean spherical approximation

Blum and Høye [19] have provided an analytic solution for the multi-component PM in terms
of the Laplace transforms,

G̃i j(s) = L [
rgi j(r)

] =
∫ ∞

0
dr rgi j(r) exp{−sr}, (24)

of the partial radial distribution functions gi j(r) multiplied by r .
For the more special PM system we are considering here, that is, for an infinitely dilute

macroion component and a host dispersion of equally sized microions, Blum and Høye’s
general solution simplifies considerably. A very useful simplifying property of the MSA
solution in our case is that, due to the linearity of the MSA in the (Coulombic) pair potential,
the radial distribution functions can be written as the sum of a hard-sphere and electrical
contribution in the form

gTα(r) = [
1 + hHS

T (r)
]

+ hEl
T (r)Zα

gαβ(r) = [
1 + hHS(r)

]
+ hEl(r)Zα Zβ,

(25)

where it should be noted that hEl
T (r) ∝ ZT. In the MSA, the coupling between the

density and charge fluctuations is completely neglected. Due to the linearity of the Laplace
transformation, the Laplace transforms of the vector rgT(r) = r(n1/2 + hT(r)) and the matrix
rg(r) = r(n1/2n1/2 + h(r)) are decomposable as

G̃T(s) = G̃HS
T (s)n1/2 + G̃EL

T (s)u (26)

and

G̃(s) = G̃HS(s)n1/2n1/2 + G̃EL(s)uu, (27)

with vectors n1/2 and u (with components {n1/2
α } and {n1/2

α Zα}, respectively) characterizing
the densities and ionic strengths of the microion components, respectively. Here, G̃HS

T (s),
G̃EL

T (s), G̃HS(s) and G̃EL(s) are scalar functions whose explicit analytic expressions are given
in the appendix. Although there exist analytical expressions for the electrostatic and hard-
sphere parts of the partial radial distribution functions in equation (25) as so-called zonal
expansions [28, 20], it is possible to obtain the input functions in the MCS equation (22)
directly from the Laplace transform solution without first requiring the calculation of the
radial distribution function. Recognizing that

f (k) = 4π

k

∫ ∞

0
dr f (r) sin(kr) = −4π

k
Im

{
f̃ (s = ik)

}
(28)
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for any Fourier-integrable isotropic function f (r), we obtain the static input functions directly
in terms of the Laplace transform solutions given in the appendix, as

hT(k) = hHS
T (k)n1/2 + hEL

T (k)u = −4π

k
Im

{
G̃T(ik)

}
h(k) = hHS(k)n1/2n1/2 + hEL(k)uu = −4π

k
Im

{
G̃(ik)

}
.

(29)

The hydrodynamic input functions can be evaluated in the MSA by proceeding in the
following way. First, we split them into hard-sphere and electrical parts,

hd
T(k) = D0

T

{
hdHS

T (k)n1/2 + hdEL
T (k)u

}
Hd(k) = D0 {

hdHS(k)n1/2n1/2 + hdEL
T (k)uu

}
,

(30)

with

hdHS
T (k) =

∫ ∞

0
dr r

[
1 + hHS

T (r)
]

KT(k, r)

hdEL
T (k) =

∫ ∞

0
dr rhEL

T (r)KT(k, r).

(31)

The scalar functions hdHS(k) and hdEl(k) in the matrix hd(k) of partial microion–microion
hydrodynamic functions follow from equation (31) with the replacements λ → 1, λ′ → 2,
KT(k, r) → Ks(k, r), and hHS,EL

T (r) → hHS,EL(r).
Secondly, we express the hydrodynamic functions in terms of Blum and Høye’s analytic

Laplace transforms by expanding the spherical Bessel functions appearing in the hydrodynamic
kernels, equations (15) and (20), in trigonometric functions. This allows us to use the relations

f̃ (n)(s) ≡ L
[

f (r)

rn

]
=

∫ ∞

s
du

(u − s)n−1

(n − 1)!
f̃ (u), (32)

for n = 0, 1, 2, . . . and s > 0, with∫ ∞

0
dr

f (r)

rn
sin(kr) = − Im

{
f̃ (n)(s = ik)

}
∫ ∞

0
dr

f (r)

rn
cos(kr) = Re

{
f̃ (n)(s = ik)

}
.

(33)

Equation (32) follows from repeated application of the well-known Laplace transform
expression

∫ ∞
s du f̃ (u) = L [ f (r)/r ].

Denoting the Laplace transform of rgT(r)/rn as G̃
(n)
T (s), and the Laplace transform of

rg(r)/rn as G̃(n)(s), we can write the distinct hydrodynamic functions as

1

D0
T

hd
T(k) = 9VT

2a2
T

{
−1

k
Im

{
G̃

(1)
T (ik)

}
+

1

k2
Re

{
G̃

(2)
T (ik)

}
+

1

k3
Im

{
G̃

(3)
T (ik)

}
− λ′′(kaT)2

(
1

k5
Im

{
G̃

(5)
T (ik)

}
+

1

k4
Re

{
G̃

(4)
T (ik)

} − 1

3k3
Im

{
G̃

(3)
T (ik)

})}
(34)

for the vector of tracer–microion HI contributions, and as

1

D0
Hd(k) = 9Vs

2a2
s

{
−1

k
Im

{
G̃(1)(ik)

}
+

1

k2
Re

{
G̃(2)(ik)

}
+

1

k3
Im

{
G̃(3)(ik)

}
− 2(kas)

2

(
1

k5
Im

{
G̃(5)(ik)

}
+

1

k4
Re

{
G̃(4)(ik)

} − 1

3k3
Im

{
G̃(3)(ik)

}) }
(35)

for the matrix of microion–microion HI contributions. According to the appendix, G̃T(u) and
G̃(u) decay exponentially for large u, and the hard-sphere parts of these functions diverge at
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u = 0 like u−2. In spite of the pole at the origin, which originates from gi j(r → ∞) = 1 and
the asymptotic long-distance part of the HI which decays like 1/r , this is of no consequence
for calculating the hydrodynamic functions, since the small-k divergent parts of the first three
transforms in equations (34) and (35) respectively, which account for the monopole (Oseen)
part of HI, mutually cancel each other, leaving distinct hydrodynamic functions which are
regular at k = 0.

The reason why we have split up all MCS-MSA input functions into a hard-sphere part
proportional to n1/2, and an electrical part proportional to u, is that the vectors n1/2 and u are
orthogonal,

n1/2 · u =
m∑

α=1

nα Zα = 0, (36)

because the electrolyte is overall electroneutral. A useful consequence of this orthogonality
property is the possibility to evaluate the inverse matrix

[
I + h(k) − d2hv(k)

]−1
in

equation (22) using the Sherman–Morrison formula [29]. Performing this matrix inversion
and all dot products using equation (36) leads us to the result that, in the MCS-MSA, the
electrolyte friction is given as the sum of a hard-sphere and electrical part, that is

�ζT = �ζ EL
T + �ζ HS

T , (37)

where

�ζ EL
T

ζ 0
T

= 1 − d2

6π2

∫ ∞

0
dk k2 u2(hvEL

T )2

1 + u2hEL(k) − u2d2hvEL(k)
(38)

�ζ HS
T

ζ 0
T

= 1 − d2

6π2

∫ ∞

0
dk k2 n(hvHS

T )2

1 + nhHS(k) − nd2hvHS(k)
, (39)

with associated hard-sphere tracer and microion vertex functions given by

hvEL
T (k) = hEL

T (k) − hdEL
T (k)

hvEL(k) = hEL(k) − hdEL(k).
(40)

The associated hard-sphere vertex functions are given analogously, with superscript EL
replaced by HS. Here, n = ∑

α nα is the total microion density, u2 = u · u = κ2/(4π LB),
LB = e2/(εkBT ) denotes the Bjerrum length of the solvent, and

κ2 = 4π LB

m∑
α=1

nα Z 2
α (41)

defines the Debye–Hückel screening parameter κ . The electrical part in equation (37) is
proportional to Z 2

T, since hvEL
T ∝ ZT, while the hard-sphere part is independent of the macroion

charge. The hard-sphere part approximately determines the additional friction experienced by
a (large) neutral tracer sphere immersed in a host dispersion of neutral microspheres. It depends
only on d , λ, and on the total volume fraction φ = (4π/3)na3

s of microions. The electrical
part depends additionally on ZT, LB/as and κaT.

Equation (37) is the main result of this paper. The analytic form of this MCS-MSA
expression for �ζT makes it amenable to a simple evaluation using a symbolic manipulation
tool like Mathematica. Before turning to a discussion of explicit results on electrolyte friction
in the following section, we first analyse here a few limiting cases of equation (37).

Ignoring HI altogether amounts to setting the tracer and microion distinct hydrodynamic
functions in equation (37) to zero. Neglecting the microion distinct functions leaves us with
the tracer–microion HI contribution to electrolyte friction only. The MCS equation (37) has
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the desirable feature that, in the limit {aT, as → 0} of pointlike tracer and microions, with both
D0 and D0

T kept finite (d < 1), it reduces to Onsager’s limiting expression,

�ζT

ζ 0
T

= 1

3
LB Z 2

Tκ (1 − d) , (42)

stating that the ion friction coefficient in a dilute (i.e., with κ small) and weakly charged multi-
component electrolyte increases linearly in κ [30]. Using equation (1), Onsager’s limiting law
reads

DL
T

D0
T

= 1 − 1

3
LB Z 2

Tκ (1 − d) , (43)

in terms of the (tracer) self-diffusion coefficient. For pure, monovalent aqueous electrolytes
the limiting law is valid only up to a concentration of about 0.01 M [31].

The electrolyte friction vanishes in the limit d → 1 of infinitely mobile microions, since
the electrolyte atmosphere around the tracer remains spherically symmetric with respect to the
tracer at each instant of time. In the limit as → 0 of pointlike microions of finite D0, the MSA
solution in the appendix reduces to the Debye–Hückel (DH) solution for the pair distribution
functions. Moreover, for pointlike microions, there is no contribution to electrolyte friction
arising from microion–microion HI, since (see equation (31))

hdEL(k) =
∫ ∞

0
dr rhEL(r)Ks(k, r) = 0, (44)

and Ks(k, r) ∝ as for small as. Note that this conclusion remains valid even when a point-
particle approximation for hEL(r) different from the DH approximation is used [22].

The static and hydrodynamic input functions for pointlike microions in the DH
approximation are summarized in the appendix. Therein, it is further shown that hvHS

T (k) = 0,
that is (

�ζT

ζ 0
T

)HS

(as → 0) = 0. (45)

The absence of a charge-independent friction contribution for pointlike particles, when the
tracer-point particle HI are treated on the RP level, follows also from exact low-density
calculations. In [7], this finding was attributed to the advection of the pointlike microions
in the Stokesian flow field created by the moving tracer. Neglecting tracer–microion HI
gives rise to a non-zero charge-independent contribution, (�ζT)HS, which, in turn, leads
to a monotonic decline of DL

T with increasing ionic strength, in conflict with experimental
observation, where for colloids a minimum at κaT ≈ 0.5 is observed. Therefore, it has been
concluded that colloidal electrolyte friction must be due to a combined effect of electro-steric
and hydrodynamic forces [7].

In the following section we will show, for finite-sized and hydrodynamically interacting
microions, that the hard-sphere contribution to DL

T is usually quite small unless the microion
volume fraction is large. Under the latter circumstances the hard-sphere part of �ζT can
significantly influence the ionic-strength dependence of DL

T .

4. Results and discussion

We first discuss charge-stabilized systems where the tracer–microion size ratio λ is much larger
than 1. In figure 1, experimental data of Schumacher and van de Ven [4] for the long-time tracer
diffusion coefficient, DL

T , of polystyrene latex spheres of radius aT = 20 nm, dispersed in an
aqueous NaCl solution at 25 ◦C (with Bjerrum length LB = 7.1 Å and η0 = 0.89×10−3 Pa s),
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Figure 1. Long-time tracer diffusion coefficient versus κaT for polystyrene spheres in an NaCl
solution. Solid curve: MCS-DH for pointlike microions; long dashed curve: MCS-MSA for
λ = 87; short dashed curve: Booth–Geigenmüller theory [9, 10]; symbols: dynamic light scattering
data from [4].

are plotted against κaT. These data are compared with the MCS-MSA prediction for finite-
sized microions with λ = 87, the MSA-DH result for pointlike microions (λ → ∞), and
with Geigenmüller’s correction [10] of Booth’s theory of colloidal electrolyte friction [9]. In
Booth’s theory, finite size effects are not included, and HI are treated on an Oseen-type level
of approximation. The mean radius of the microions, here consisting of Na+ and Cl− ions, is
taken as as = (aNa+ + aCl−)/2 = 2.3 Å, where aNa+ and aCl− are found by applying the Stokes–
Einstein relation with slip boundary conditions to the known free diffusion coefficients of these
ions in water at 25 ◦C [32]. The free diffusion coefficient of the microions in all three schemes
is then approximated to be D0 = 1.60 ×10−9 m2 s−1 in accord with slip boundary conditions.
The free-diffusion coefficient of the tracer particles is taken to be D0

T = 1.2425×10−11 m2 s−1

so that d2 = D0/(D0 + D0
T) ≈ 0.99.

The theoretical results shown in the figure have been obtained by assuming a macroion
charge number equal to ZT = 165. According to theory and experiment, the minimum
(maximum) in the tracer-diffusion coefficient (electrolyte friction) appears near κaT ≈ 0.3
where the extension of the electric double layer, as quantified by κ−1, is comparable to the
diameter of the tracer. It can be seen that the inclusion of electro-steric and hydrodynamic
effects due to finite-sized microions produces only a slight change in the prediction of the MCS
which is most visible around κaT ≈ 1.5. The contribution of the MCS hard-sphere part to
the electrolyte friction is negligibly small. This is consistent with the result stated earlier that
�ζ HS

T vanishes for as → 0, i.e., for λ 	 1. For the present system it should be noted that the
microion volume fraction is very small even for the largest value κaT ≈ 6 considered in the
figure (i.e., φ = 5 × 10−4 for λ = 87 according to equation (A.5)).

For large λ, the microions may be treated as part of the solvent as far as the short-range
part of their HI and the short-range part of their direct (i.e., excluded volume) interactions
are concerned. In fact, the long-time self-diffusion coefficient of a neutral tracer sphere in a
semi-dilute dispersion of host spheres is well represented by [33–35]

DL
T = D0

T

(
1 − 2.5φ

1 + 0.16λ−1

)
+ O(φ2), (46)

which demonstrates that, for large λ, DL
T ≈ kBT/(6πηaT) with η = η0(1 + 2.5φ). As ‘seen’

on the length scale of the large neutral tracer, the neutral host solution acts as an effective fluid,
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characterized at low host density by a viscosity η given by the Einstein result. The continuum
limit for the host dispersion is practically reached when λ is larger than 10.

The MCS-DH expression for the electrolyte friction of pointlike microions is of a
particularly simple and ready-to-use form. It is obtained by inserting the DH static correlation
functions listed in the appendix into the electrostatic part given by equation (39). After some
algebra this leads to (see equation (53) in [7])

�ζ EL
T

ζ 0
T

= LB Z 2
T D0

T

12aT D0
F(κaT, d), (47)

where we have introduced the reduced electrolyte friction coefficient,

F(κaT, d) = 8

π
(κaT)2d2

∫ ∞

0
dy y2 wT(y, κ)2[

y2 + (κaT)2
] [

y2 + (κaT)2d2
] , (48)

with

wT(y, κ) = 3

2

[
y2 + (κaT)2

] eκaT

1 + κaT
f (y) − 1

1 + κaT
[cos(y) + κaT j0(y)] ,

f (y) =
∫ ∞

1
dx e−xy

[
j0(xy) − j1(xy)

xy
+

j2(xy)

3x2

]
,

and y = kaT. The function F(κaT, d) is independent of ZT and, contrary to �ζT, it does
not vanish in the limit d → 1 of infinitely fast microions. Without tracer–microion HI, the
MCS-DH approximation simplifies to

F(κaT, d) = 2κaTd

(1 + κaT)2

[
1 +

d − 1

d + 1
e−2κaTd

]
. (49)

The leading order term in the expansion of F(κaT, d) for small κaT � 1, i.e., for a thick
double layer and dilute electrolyte, is given by

F(κaT � 1, d) ≈ 2d2

1 + d
(2κaT) + O(κ2), (50)

both with and without HI. Of course, this is just Onsager’s limiting law expressed in terms of
the reduced friction function F(κaT, d). Assuming pointlike microions implies d ≈ 1 and
hence F(κaT) ≈ 2κaT for small κaT. For d ≈ 1, the MCS-DH expression without HI reduces
further to

F(κaT, d → 1) = 2κaT

(1 + κaT)2
. (51)

This functional form has a maximum with value 0.5 at κaT = 1, and decays slowly for large
κaT like κ−1. The HI between the tracer and microions strongly reduce the electrolyte friction
effect. As shown in figure 2, the MCS-DH with tracer–microion HI leads to a maximum in
F(κaT, d) of height 0.13, at a screening parameter κaT ≈ 0.3 significantly smaller than 1.
Moreover, the decay of F(κaT) towards zero for large κ is much faster when HI are considered
(e.g., ∼18/(κaT)

4 according to Booth’s theory). It has been shown previously (see [7]) that
the MCS-DH prediction for F(κaT, d ≈ 1) with HI is very similar to the corresponding result
from the Booth–Geigenmüller theory of colloidal electrolyte friction [9, 10]. This fact is
exemplified in figure 2, which further includes the small-κ and large-κ asymptotic forms.

To reveal finite microion size effects, F(κaT, d) is plotted versus κaT in figure 3 for various
λ, with as fixed to 2.3 Å. We assume here slip (C = 4) and stick (C = 6) surface boundary
conditions for the microions and for the macroion, respectively, so that d2 = λ/(λ + 2/3).
Recall that F(κaT, d) calculated with linear MSA input is independent of ZT. It is therefore
not necessary here to specify the λ-dependence of the tracer charge.
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Figure 2. Reduced electrolyte friction coefficient in
the MCS-DH approximation with and without HI, and
in Booth–Geigenmüller theory. The parameters are the
same as in figure 1. Included are the asymptotic forms
for very small and very large screening parameters (dotted
curves).

Figure 3. The MCS-MSA electrical part (i.e., the reduced
colloidal friction coefficient) in aqueous electrolyte
solution for various λ. The λ → ∞ result corresponds
to the DH static input.

As seen, at larger λ the only effect of the finite microion size is to shift the maximum in
F(κaT) to larger values of κaT and, furthermore, to slightly reduce the friction. However,
the effect is quite small even for values of λ as small as 5. Similar to related work of
Vizcarra-Rendón et al [14], where finite size effects on colloidal electrolyte friction have
been investigated on the basis of a generalized Langevin equation approach with HI ignored,
the MCS-MSA scheme also shows a lessening in the large-κ decay of F(κaT) both with (see
figure 3) and without HI when the size ratio is decreased towards the value 1. However, in
the approach of Vizcarra-Rendón et al the maximum in F(κaT) is roughly equal to 0.5 and
is located near κaT ≈ 1, that is, the magnitude and position of the friction maximum are
strongly overestimated. This observation points again to the importance of HI for the colloidal
electrolyte friction effect.

In figure 4 we plot the long-time tracer diffusion coefficient for fixed microion size as,
and varying macroion radius aT = λas. The free diffusion coefficients of the macroion and
the microions are calculated from the Stokes–Einstein relation using stick and slip boundary
conditions respectively, and the macroion charge is assumed to be related to the surface area,
so that ZT = (144/862)(λ−1)2 + 1. For all the size ratios plotted the hard-sphere contribution
is negligible. The diffusion coefficient shows a very strong dependence on the particle charge.

Whereas the hard-sphere part in equation (37) contributes very little in the case of genuine
colloidal tracer diffusion with λ 	 1, it may significantly affect the ionic self-diffusion
coefficient in the limiting case of a non-dilute symmetric mixture of monovalent microions,
explored in figure 5. The hard-sphere contribution enforces here a monotonic decrease of
the self-diffusion coefficient, DL, with increasing κ ∝ φ1/2. However, it should be realized
for λ ≈ 1 and φ > 0.1 that it becomes necessary to solve the MCS self-consistently, at the
expense of the simple analytic expressions given in equation (37). For the hard-sphere part
in particular, it might be further necessary to invoke a hydrodynamic rescaling procedure as
forwarded in [36–39], to account for many-body HI effects.

At any rate, figure 5 reconfirms, for the case of a genuine electrolyte, that the microion–
microion HI contribution of the host ions to electrolyte friction is rather insignificant, even
when λ is not large compared to 1. In this figure the calculated long-time tracer diffusion
coefficient is shown with and without microion–microion HI (here more appropriately called
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Figure 4. Long-time tracer diffusion coefficient
calculated via the MCS-MSA for large λ. The macroion
charge is here chosen in relation to the surface area. The
λ → ∞ result corresponds to the DH static input for
ZT = 145.

Figure 5. MCS-MSA predictions for the reduced
ionic long-time self-diffusion coefficient, DL/D0, of a
symmetric electrolyte (λ = 1 and ZT = 1) of monovalent
microions with LB/as = 3.09 and as = 2.3 Å.

Figure 6. The normalized long-time tracer diffusion
coefficient of a macroion of constant charge number
ZT = 20 but varying size aT, with fixed as = 2.3 Å and
LB/as = 3.09. The curves are truncated at values of κ

corresponding to a microion volume fraction of φ ≈ 0.15.

Figure 7. The long-time tracer diffusion coefficient of
aqueous solutions of globular micelles at the critical
micellar concentration. The squares and circles are
experimental data taken from [17], the triangles are data
from [18], and the curves are the MCS-MSA fits.

host–host HI, since the microions and the tracer ion are equal sized), and with and without
the hard-sphere contribution included. The hard-sphere contribution becomes significant for
φ > 0.01 and dominates for φ > 0.05. It should be pointed out, however, that the molarity of
NaCl required for φ = 0.05 is 1.5 M, which is far above the maximum solubility of NaCl in
water.

The effect of a size-independent macroion charge on the long-time tracer diffusion
coefficient is studied in figure 6. The charge on the macroion is assumed here to be fixed
to ZT = 20, but we again have d2 = λ/(λ + 2/3). It is seen that the electrolyte friction is
strongest when the macroion size is smallest. This is due primarily to the increasing diffusivity
of the strongly charged tracer ion with decreasing λ. The hard-sphere contribution is dominated
by the electrical contribution.
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According to Onsager’s limiting law, the slope of DL
T(κ) at κ = 0 is given by

d

d(κaT)

(
DL

T

D0
T

)
(κ = 0) = −1

3

(
LB

as

)
Z 2

Tλ−1

(
1 −

(
λ

λ + 2/3

)1/2
)

. (52)

The slope becomes increasingly negative with decreasing λ. At smaller λ, the tracer
macroion moves faster through its microion cloud, which causes a larger electro-hydrodynamic
distortion of its surroundings and thus a stronger microion relaxation effect.

Having discussed various theoretical predictions, we finally compare the MCS-MSA
scheme for tracer diffusion with experimental results for aqueous solutions of moderately
charged micelles. Tominaga and Nishinaka [17, 18] have measured the long-time
self-diffusion coefficient of a series of alkyltrimethylammonium-halide micelles against
added salt concentration. Specifically the surfactants they have studied are tetradecyl-
trimethylammonium bromide (TTAB), cetyl-trimethylammonium bromide (CTAB) and steryl-
trimethylammonium chloride (STAC). The surfactant ions consist of a large head group,
(CH3)3N+, attached to an alkyl chain containing 14, 16 and 18 carbon atoms, respectively.
The stretched length of the surfactant ions is 2.27, 2.53 and 2.79 nm, respectively.

The surfactants are dispersed in water with either NaCl or NaBr depending on the
associated counterion of the surfactants. The self-diffusion coefficients of these ions are
1.694×10−9 m2 s−1 for Na+, 2.588×10−9 m2 s−1 for Cl− and 2.538×10−9 m2 s−1 for Br− [32].
Assuming slip boundary conditions these coefficients correspond to the radii of 2.788, 1.818
and 1.854 Å, respectively. These radii are for the hydrated ions. The Na+ ions effectively
carry with them a hydration shell, while the larger anions do not. The anion hydrated radii are
roughly equivalent to the Pauling crystalline radii. In our calculations we take the radius of the
microions to be the average between the cations and anions, that is as = 2.30 Å for NaCl and
as = 2.32 Å for NaBr. The free diffusion coefficients of the model microions are approximated
using the Stokes–Einstein formula with slip boundary conditions. Figure 7 shows the MCS-
MSA fit to the experimentally measured long-time diffusion coefficients of the micelles at
35 ◦C in water (viscosity η0 = 0.7194 × 10−3 Pa s and Bjerrum length LB = 7.25 Å).

We assume here that the free diffusion coefficients of the micelles are also given by the
Stokes–Einstein relation with slip boundary conditions. There is some evidence that one should
use slip boundary conditions in the Stokes–Einstein relation when the size of the macroion is
not very much larger than the one of the microions [40–42]. There are therefore only two free
parameters in the fit to the experimental data,namely the tracer radius aT and the micellar charge
number ZT. The resulting fit parameters for the three types of micelles are aT = 3.89 nm and
ZT = 45 for TTAB, aT = 4.36 nm and ZT = 56 for CTAB, and aT = 4.53 nm and ZT = 60
for STAC. The difference between the fitted radii for the micelles and the stretched length of
the respective surfactant ions is approximately 1.5 nm. Possible reasons for this are firstly,
that not all surfactant molecules in a micelle have dissociated headgroups, secondly, there
is a hydration shell formed around each micelle, and thirdly, the micelles carry associated
Stern layers of essentially immobile counterions. The latter layer is not accounted for in the
linearized Poisson–Boltzmann equation from which the pair correlation functions we use here
are derived. The size ratio between the micelles and the model microions in all three systems is
between 16 and 20. The failure of the MCS-MSA fit at high salt concentrations for the TTAB
system is probably due to changes in the size and shape of a micelle due to increased surfactant
aggregation. This feature is also observed in the figure for the CTAB and STAC surfactants
at somewhat lower κ . Despite this behaviour the MCS-MSA describes the micellar diffusion
remarkably well, particularly by accounting for the friction maximum at κaT ≈ 0.3. In the
present micellar systems, the three size ratios are still so large that finite microion size effects
are practically insignificant.
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In summary, we have derived a simplified MCS with excluded volume interactions and
HI between the small microions included, which compares quite well with experimental
data. Using this scheme, we have found strong evidence that microionic finite size effects
on macroion tracer diffusion are very small for size ratios typically larger than 10. This gives
an a posteriori justification for the complete neglect of microion finite size influences in earlier
work [7, 8]. Moreover, it allows for a simplified treatment of colloidal self-diffusion, collective
diffusion [27], viscoelasticity [26] and electrophoresis of dense charge-stabilized colloidal
suspensions using an extension of the present MCS scheme [43] based on earlier related work.
In contrast to microion–microion HI, the influence of macroion–microion HI is crucial to the
colloidal electrolyte friction effect. According to our theoretical scheme, the effect of ion–
ion HI remains rather small even when considering the limiting case of self-diffusion in a
genuine (symmetric) electrolyte, in accord with a corresponding finding from smart Brownian
dynamics simulations [44]. However, electro-steric finite size influences are important for
λ ≈ 1, and need to be accounted for at larger volume fractions by a self-consistent solution of
the MCS. Such a fully self-consistent calculation will be performed in future work. Finally,
we would like to point out that the present MCS (and its extensions in [43]) allow us also to
calculate time-dependent quantities like mean-square displacements, velocity autocorrelation
functions, and frequency-dependent viscosities.
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Appendix. MSA static pair correlation functions

The MSA solution provided by Blum and Høye [19] for the Laplace transforms of rgi j(r)

in a general multi-component PM simplifies greatly when a restricted PM of equally sized
microions with an infinitely dilute tracer component is considered. The Laplace transform
of GT(r) = rgT(r) is then separable in a hard-sphere and electrostatic part of the special
form quoted in equation (26), with scalar functions G̃HS

T (s) and G̃EL
T (s) proportional to the

hard-sphere and electrical contributions, respectively.
The hard-sphere scalar function describing tracer–microion pair correlations is given by

G̃HS
T (s) = e−saTλ′

s2 D0(s)
[saTb(λ) + A] , (A.1)

where

D0(s) = 1 − 12φ [Aϕ2(2sas) + Bϕ1(2sas)]

ϕ1(u) = (1 − u) − e−u

u2

ϕ2(u) = ϕ1(u)

u
+

1

2u

b(λ) = λ − 1

λ
A +

2

λ
B

and

A = 1 + 2φ

(1 − φ)2

B = 1 + 0.5φ

(1 − φ)2
.
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Here,

φ = 4π

3
na3

s , (A.2)

is the total volume fraction of all microion components, and n = ∑
α nα is the total

electrolyte number density. The contact distance between the tracer sphere and a microion is
aT + as = aTλ′, with λ′ = 1 + 1/λ.

The electrostatic scalar function is given by

G̃EL
T (s) = −LB ZT

1

(1 + 2�aT)

1

(1 + 2�as)

e−saTλ′

s D±(s)
, (A.3)

where

D±(s) = 1 +
2�

s
+

2�2

s2

(
1 − e−2sas

)
.

Here, LB = e2/(εkBT ) is the Bjerrum length and ZT is the macroion charge number in units
of elementary charges. Moreover,

� = 1

4as

[√
1 + 4κas − 1

]
(A.4)

is the MSA screening parameter for the restricted PM of microions, which depends
monotonically on the Debye–Hückel screening parameter κ . For monovalent electrolyte ions
(i.e., |Zα| = 1 for all α),

(κaT)2 = 3

(
LB

as

)
λ2φ, (A.5)

which shows that φ ∝ λ−2 for κaT fixed. For aT = as, the tracer component is part of the
restricted PM of equally sized microions. Therefore, the scalar functions G̃HS(s) and G̃EL(s)
in the decomposition (27) for the Laplace transform of the microion–microion pair correlations
are readily obtained from equations (A.1) and (A.3) by setting aT to as and λ to 1.

The MSA solution reduces to the DH solution in the limiting case of pointlike microions
(as = 0), where φ = 0 and � = κ/2. Then,

G̃HS
T (s) = e−saT

s2
[1 + saT] , (A.6)

and

G̃EL
T (s) = −LB ZT

e−saT

(1 + κaT)(s + κ)
. (A.7)

Using equation (28), we readily obtain for point particles,

hHS
T (k) = −3VT

j1(kaT)

kaT
, (A.8)

and in the DH approximation,

hEL
T (k) = −3VT

(
LB

aT

)
ZT

(kaT)2 + (κa2
T)

[
cos(kaT) +

(kaT)(κaT)

1 + κaT
j1(kaT)

]
. (A.9)

From equation (16), it follows for point particles that

hdHS
T (k) = −3VT

j1(kaT)

kaT
, (A.10)

since hHS
T (r) = −�(aT − r). Together with equations (A.8) and (40), this proves for pointlike

microions that hvHS
T (k) = 0 (see equation (45)). Finally, the electrostatic part of the total

correlation function for pointlike microions follows from equation (A.9) as

hEL(k) = − 4π LB

k2 + κ2
. (A.11)
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